Most existing image inpainting algorithms are based on a single view, struggling with large holes or the holes containing complicated scenes. Some reference-guided algorithms fill the hole by referring to another viewpoint image and use 2D image alignment. Due to the camera imaging process, simple 2D transformation is difficult to achieve a satisfactory result. In this paper, we propose 3DFill, a simple and efficient method for reference-guided image inpainting. Given a target image with arbitrary hole regions and a reference image from another viewpoint, the 3DFill first aligns the two images by a two-stage method: 3D projection + 2D transformation, which has better results than 2D image alignment. The 3D projection is an overall alignment between images and the 2D transformation is a local alignment focused on the hole region. The entire process of image alignment is self-supervised. We then fill the hole in the target image with the contents of the aligned image. Finally, we use a conditional generation network to refine the filled image to obtain the inpainting result. 3DFill achieves state-of-the-art performance on image inpainting across a variety of wide view shifts and has a faster inference speed than other inpainting models.
translated by 谷歌翻译
在过去的十年中,AI AID毒品发现(AIDD)的计算方法和数据集策划的繁荣发展。但是,现实世界中的药物数据集经常表现出高度不平衡的分布,这在很大程度上被当前的文献忽略了,但可能会严重损害机器学习应用程序的公平性和概括。在这一观察结果的激励下,我们介绍了Imdrug,这是一个全面的基准标准,其开源python库由4个不平衡设置,11个AI-Ready数据集,54个学习任务和16种为不平衡学习量身定制的基线算法。它为涵盖广泛的药物发现管道(例如分子建模,药物靶标相互作用和逆合合成)的问题和解决方案提供了可访问且可定制的测试床。我们通过新的评估指标进行广泛的实证研究,以证明现有算法在数据不平衡情况下无法解决药物和药物挑战。我们认为,Imdrug为未来的研究和发展开辟了途径,在AIDD和深度不平衡学习的交集中对现实世界中的挑战开辟了道路。
translated by 谷歌翻译
已经证明,经过代码完成培训的大型语言模型(LLMS)能够合成DocStrings的简单Python程序[1]。我们发现这些代码编写的LLM可以被重新使用以编写机器人策略代码,给定自然语言命令。具体而言,策略代码可以表达处理感知输出的功能或反馈循环(例如,从对象检测器[2],[3])并参数化控制原始API。当作为输入提供了几个示例命令(格式为注释)后,然后是相应的策略代码(通过少量提示),LLMS可以接收新命令并自主重新编写API调用以分别生成新的策略代码。通过链接经典的逻辑结构并引用第三方库(例如,numpy,shapely)执行算术,以这种方式使用的LLM可以编写(i)(i)表现出空间几何推理的机器人策略,(ii)(ii)将其推广到新的说明和新指令和新指令和(iii)根据上下文(即行为常识)规定模棱两可的描述(例如“更快”)的精确值(例如,速度)。本文将代码作为策略介绍:语言模型生成程序的以机器人为中心的形式化(LMP),该程序可以代表反应性策略(例如阻抗控制器),以及基于Waypoint的策略(基于远见的选择,基于轨迹,基于轨迹,控制),在多个真实的机器人平台上展示。我们方法的核心是促使层次代码 - 代码(递归定义未定义的功能),该代码可以编写更复杂的代码,还可以改善最新的代码,以解决HOMANEVAL [1]基准中的39.8%的问题。代码和视频可从https://code-as-policies.github.io获得。
translated by 谷歌翻译
大多数当前的多模式摘要方法遵循级联的方式,在该方式中,首先使用现成的对象检测器来提取视觉特征,然后将这些功能与语言表示融合在一起,以使用编码器模型生成摘要。级联的方式无法捕获图像和段落之间的语义一致性,这对于确切的摘要至关重要。在本文中,我们向vil-sum提出了段落级级\ textbf {vi} sion- \ textbf {l} arnguage语义对齐和多模式\ textbf {sum} marization。 VIL-SUM的核心是一个联合多模式编码器,具有两个精心设计的任务,图像重新排序和图像选择。联合多模式编码器捕获了模式之间的交互,重新排序任务指导该模型学习段落级别的语义对齐,而选择任务指导模型在最终摘要中将模型指向所选摘要相关的图像。实验结果表明,我们提出的VIL-SUM显着优于当前最新方法。在进一步的分析中,我们发现两个精心设计的任务和联合多模式编码器可以有效地指导模型学习合理的段落图像和摘要图像关系。
translated by 谷歌翻译
细颗粒实体打字(FET)旨在推断本文中提及的特定语义类型。 FET的现代方法主要集中于学习某种类型的外观。很少有作品直接建模类型差异,也就是说,让模型知道一种类型与其他类型不同的程度。为了减轻这个问题,我们提出了一种富含类型的FET的分层对比策略。我们的方法可以直接建模层次类型之间的差异,并提高区分多元类似类型的能力。一方面,我们将类型嵌入到实体上下文中,以使类型的信息直接感知。另一方面,我们在层次结构上设计了一个约束的对比策略,以直接建模类型差异,这可以同时感知不同粒度下类型之间的区分性。 BBN,Ontonotes和Figer的三个基准测试的实验结果表明,我们的方法通过有效建模类型差异在FET上实现了显着性能。
translated by 谷歌翻译
无监督的摘要方法通过纳入预训练的语言模型的表示形式来取得了显着的结果。但是,当输入文档非常长的同时,现有方法无法考虑效率和有效性。为了解决这个问题,在本文中,我们提出了一个基于语义块的无监督长期文档摘要,提议有效的粗到1个方面的排名(C2F-FAR)框架。语义块是指描述相同方面的文档中的连续句子。具体而言,我们通过将一步排名方法转换为层次多范围两阶段排名来解决此问题。在粗级阶段,我们提出了一种新的段算法,将文档拆分为相关的语义块,然后过滤量微不足道的块。在精细阶段,我们在每个块中选择显着句子,然后从选定的句子中提取最终摘要。我们在四个长文档摘要数据集上评估了我们的框架:Gov-Report,Billsum,Arxiv和PubMed。我们的C2F-FAR可以在Gov-Report和Billsum上实现新的无监督摘要结果。此外,我们的方法比以前的方法高4-28倍。
translated by 谷歌翻译
近年来,随着新颖的策略和应用,神经网络一直在迅速扩展。然而,尽管不可避免地会针对关键应用程序来解决这些挑战,例如神经网络技术诸如神经网络技术中仍未解决诸如神经网络技术的挑战。已经尝试通过用符号表示来表示和嵌入域知识来克服神经网络计算中的挑战。因此,出现了神经符号学习(Nesyl)概念,其中结合了符号表示的各个方面,并将常识带入神经网络(Nesyl)。在可解释性,推理和解释性至关重要的领域中,例如视频和图像字幕,提问和推理,健康信息学和基因组学,Nesyl表现出了有希望的结果。这篇综述介绍了一项有关最先进的Nesyl方法的全面调查,其原理,机器和深度学习算法的进步,诸如Opthalmology之类的应用以及最重要的是该新兴领域的未来观点。
translated by 谷歌翻译
尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智力引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等作为平台提供的重要模块。基于这些易于使用的模块,BrainCog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,Braincog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴大脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组件集成并用于构建AI模型和应用。为了使科学追求解码生物智能的性质并创建AI,Braincog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑部的尖峰神经网络AI,并模拟认知大脑在多个尺度上。可以在https://github.com/braincog-x上找到Braincog的在线存储库。
translated by 谷歌翻译
最近的作品表明,如何将大语言模型(LLM)的推理能力应用于自然语言处理以外的领域,例如机器人的计划和互动。这些具体的问题要求代理商了解世界上许多语义方面:可用技能的曲目,这些技能如何影响世界以及对世界的变化如何映射回该语言。在体现环境中规划的LLMS不仅需要考虑要做什么技能,还需要考虑如何以及何时进行操作 - 答案随着时间的推移而变化,以响应代理商自己的选择。在这项工作中,我们调查了在这种体现的环境中使用的LLM在多大程度上可以推论通过自然语言提供的反馈来源,而无需任何其他培训。我们建议,通过利用环境反馈,LLM能够形成内部独白,使他们能够在机器人控制方案中进行更丰富的处理和计划。我们研究了各种反馈来源,例如成功检测,场景描述和人类互动。我们发现,闭环语言反馈显着改善了三个领域的高级指导完成,包括模拟和真实的桌面顶部重新排列任务以及现实世界中厨房环境中的长途移动操作任务。
translated by 谷歌翻译
人脑中的神经网络如何代表常识性知识,而完整的相关推理任务是神经科学,认知科学,心理学和人工智能的重要研究主题。尽管使用固定长度向量代表符号的传统人工神经网络在某些特定任务中取得了良好的表现,但它仍然是一个黑匣子,缺乏可解释性,远非人类对世界的看法。受神经科学中的祖母细胞假设的启发,这项工作调查了可以将编码和峰值定时依赖性可塑性(STDP)机制的人群整合到峰值神经网络的学习中,以及神经元的人群如何通过指导符号来指导符号在不同的神经元种群之间完成顺序触发。不同社区的神经元种群共同构成了整个常识知识图,形成了巨大的图形尖峰神经网络。此外,我们引入了奖励调节的峰值时间依赖性可塑性(R-STDP)机制,以模拟生物增强学习过程并相应地完成相关推理任务,比图形卷积人工神经网络实现了可比的准确性和更快的收敛速度。对于神经科学和认知科学领域,本文的工作为进一步探索人脑代表常识知识的方式提供了计算建模的基础。对于人工智能领域,本文通过构建常识性知识表示并推理具有固体生物学合理性的尖峰神经网络,指出了实现更健壮和可解释的神经网络的探索方向。
translated by 谷歌翻译